Collimators are specified by the subscript 0 (source-monochromator), 1 (monochromator-sample), 2 (sampleanalyzer) and 3 (analyzer-detector). For a double-axis spectrometer $\alpha_{3}=\beta_{3} \rightarrow \infty$ in the above expressions giving

$$
\begin{equation*}
\alpha_{A}=\alpha_{2} \quad \beta_{A}=\beta_{2} . \tag{5c}
\end{equation*}
$$

The following points should be noted.
(a) f_{h} is independent of θ_{s} and can be absorbed into other constants. However, it gives a simple expression for the loss of intensity due to horizontal collimation.
(b) If $4 \eta_{v}^{2}>\left(\beta_{M}^{2}+\beta_{A}^{2}\right)$ there will necessarily be a cross over from a small $-Q$ region where

$$
f_{v} \simeq 1, \quad L \sim \frac{1}{\sin \theta_{s}}
$$

to a large- Q region where

$$
f_{v}=\frac{\left[\beta_{M}^{2}+\beta_{A}^{2}\right]^{1 / 2}}{2 \eta_{v} \sin \theta_{s}}, \quad L \sim \frac{\left[\beta_{M}^{2}+\beta_{A}^{2}\right]^{1 / 2}}{2 \eta_{v}\left(\sin \theta_{s}\right)^{2}} .
$$

In the large- Q region the θ_{s} dependence is identical to that for a powder sample. (One may think of f_{v} as the fraction of total out-of-plane scattering reaching the detector.)
(c) In comparing $\theta-2 \theta$ scans done with equal θ step, (2) is simply modified by replacing the factor $\left(\sin \theta_{s}\right)^{-1}$ by (\sin $\left.2 \theta_{s}\right)^{-1}$.

Fig. 1 illustrates the effect of vertical Lorentz corrections for neutron scattering data taken on a stage-2 intercalated graphite compound KC_{24}. The data were taken with $\lambda=$ $2.5 \AA$ neutrons using a triple axis spectrometer with $\beta_{M} \simeq$ 0.7° and $\beta_{A} \simeq 1.9^{\circ}$ and the (00 l) reflections had a measured mosaic $\eta_{h}=\eta_{v} \sim 2^{\circ}$ FWHM. Note that the agreement for the high-angle reflections ($l=5$ and 6) is considerably improved by application of the correct Lorentz factor.

References

Iızumi, M. (1973). Jpn. J. Appl. Phys. 12, 167-169.
Pynn, R. (1975). Acta Cryst. B31, 2555.
Yessick, M., Werner, S. A. \& Sato, H. (1973). Acta Cryst. A29, 372-379.

Acta Cryst. (1983). A39, 594
Statistical geometry. I. A self-consistent approach to the crystallographic inversion problem based on information theory: Erratum. By Stephen W. Wilkins, CSIRO, Division of Chemical physics, PO Box 160, Clayton, Victoria, Australia 3168 and Institut Laue-Langevin, BP156 Centre de Tri, Grenoble Cedex 38042 France, Joseph N. Varghese, CSIRO, Division of Protein Chemistry, Royal Parade, Parkville, Victoria, Australia 3052 and Mogens S. Lehmann, Institut Laue-Langevin, BP156 Centre de Tri, Grenoble Cedex 38042, France
(Received 30 March 1983)

Abstract

As a result of a printer's error, the first line of § 4.6 (page 56) of Wilkins, Varghese \& Lehmann [Acta Cryst. (1983), A39, 47-60] is in error. The first sentence of that section should read: 'In order to give an illustration of the way in which the SGM may be used, ...'.

All information is given in the Abstract.

Tensor properties and rotational symmetry of crystals. III. Use of symmetrized components in group $\mathbf{3}\left(\mathbf{3}_{z}\right)$. Erratum. By F. G. Fumi and C. Ripamonti, Istituto di Scienze Fisiche, Universitá di Genova, Italy and GNSMCNR, Unitá di Genova, Italy

(Received 18 April 1983)

Abstract

In Fumi \& Ripamonti [Acta Cryst. (1983), A39, 245-251], there are errors on page 249 in equation $\operatorname{II}(b)$ for the evenparity c^{+}subtensor and $\mathrm{II}(a)$ and (b) for the even-parity c^{-} subtensor.

The correct equations are given.

Several misprints are present on page 249 of Fumi \& Ripamonti (1983):

First column, equations II (b)
The first and third equations should read:

$$
\begin{aligned}
& \text { yyyyyxx }=c_{1} \bar{y} \overline{15} \bar{x} \bar{x} x x^{+}+c_{2} \bar{y} \bar{y} \bar{y} \bar{x} \bar{x} \bar{x} y x^{+} \\
& \text {yyyyy } x x^{+}=\frac{1}{3} \bar{y} \bar{y} \bar{x} \bar{x} x x^{+}-\frac{1}{6} \bar{y} \bar{y} \bar{y} \bar{x} \bar{x} \bar{x} y x^{+} .
\end{aligned}
$$

(c) 1983 International Union of Crystallography

